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Abstract. We study the process of diffusion-limited colloid aggregation (DLCA) using both 
static and dynamic light scattering. Static light scattering is used to measure the fractal 
dimension of the clusters as well as their structure factor, which is found to be in good 
agreement with that obtained from calculation using computer-generated clusters. Dynamic 
light scattering is used to probe both translational and rotational diffusion motion of the 
clusters. A method to separate their respective contributions is developed, allowing a 
quantitative determination of the average hydrodynamic radius. In addition, we determine 
the ratio of the hydrodynamic radius to the radius of gyration for individual aggregates, and 
find /3 = 0.93. A method is developed to scale all the dynamic light scattering data onto a 
single master curve, whose shape is sensitive to key features of the DLCA process. Good 
agreement is found between our prediction of the shape of the master curve and that obtained 
from experiments. Using several completely different colloids, we find that the shape of their 
master curves are identical, their fractal dimensions are identical and their aggregation 
kinetics are identical. This provides strong evidence of the universality of the DLCA regime 
of colloid aggregation. 

1. Introduction 

In recent years, there have been significant advances in our understanding of the process 
of colloid aggregation [l]. The key to these advances is the recognition that the highly 
disordered structure of colloidal aggregates can be quantitatively characterised by its 
scaling behaviour, and therefore is well described as a fractal. Furthermore, modern 
scaling concepts have found many applications in the description of the kinetics of 
aggregation processes. 

The most widely considered form of colloid aggregation is that which begins with a 
suspension of monodisperse particles. Upon aggregation, these particles collide due to 
thier Brownian motion and stick together irreversibly to form rigid clusters. The clusters 
themselves continue to diffuse, collide and form yet larger clusters, resulting in a 
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polydisperse mass distribution. This process is called cluster-cluster aggregation, and is 
a non-equilibrium, kinetic growth process. Both the aggregation kinetics and the shape 
of the cluster mass distribution are intrinsically related to the structure of the clusters 
that are ultimately formed. A complete characterisation of this aggregation process must 
include a full description of both the structure of the clusters, as well as the shape and 
time evolution of the cluster mass distribution. 

Two distinct, limiting regimes of colloid aggregation have been identified [2,3], They 
correspond directly to the regimes of rapid and slow aggregation that have been well 
established in the classical colloid literature [4]. The first of these regimes occurs when 
the aggregation rate is limited solely by the time between the collisions of the clusters 
due to their diffusion. This case is therefore called diffusion-limited cluster-cluster 
(colloid) aggregation (DLCA). The second limiting regime occurs when the reaction rate 
of two particles is much slower than the collision rate, so that a large number of 
collisions are required before two particles can stick together, resulting in a much slower 
aggregation rate. This case is called reaction-limited cluster-cluster (colloid) aggregation 
( RLCA) . 

An elegant and quite detailed picture of cluster-cluster aggregation has evolved in 
recent years [l, 51, based upon theoretical advances, extensive application of computer 
simulations and a variety of experimental measurements. Both regimes are found to 
have characteristic, yet distinct, behaviour. The cluster structure in both cases is fractal, 
with fractal dimension df = 1.8 for DLCA and df = 2.1 for RLCA. The cluster mass dis- 
tribution in both cases exhibits dynamic scaling in that its shape remains constant in 
time. For DLCA, the distribution is relatively flat up to some characteristic mass M,, 
falling exponentially above M,. For RLCA, the distribution is power-law in shape up to 
M,, with an exponential cut-off at higher masses. The characteristic mass grows linearly 
in time for DLCA and exponentially for RLCA. 

Experimentally, both static and dynamic light scattering have been among the 
techniques most frequently used to probe these features. Static light scattering is used 
to probe the structure of the colloidal aggregates, and to measure their fractal dimension. 
Dynamic light scattering probes both translational and rotational diffusion of the 
clusters, and thus is used as a measure of the cluster size and the cluster anisotropy. 
Dynamic light scattering also serves as a probe of the aggregation kinetics and can be 
used to help determine the shape of the cluster mass distribution. 

In this paper, we present a comprehensive study of the DLCA regime, utilising 
several different colloids. The relatively flat cluster mass distribution of the DLCA regime 
minimises the complications introduced by polydispersity in the analysis of light scat- 
tering results. By contrast, the effects of polydispersity significantly complicate the 
analysis of the data obtained from the RLCA regime, and these problems are discussed 
elsewhere [6]. Here, we develop a detailed description of both static and dynamic light 
scattering from DLCA clusters, based on the fractal structure of the colloidal aggregates 
and the shape of the cluster mass distribution. We discuss a method to determine 
accurately the characteristic hydrodynamic radius using dynamic light scattering for 
large clusters when both translational and rotational diffusion contribute. A series 
of calibration curves for different scattering angles are presented, enabling the two 
contributions to be disentangled and the true characteristic hydrodynamic radius of 
DLCA clusters to be determined from the experimentally measured value. Here, we use 
the calibration curves to follow the aggregation kinetics. 

In this paper, we also compare the behaviour of several different colloids aggregated 
under diffusion-limited conditions. To do this, we develop a technique for scaling the 
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results of dynamic light scattering, obtained at different times and different scattering 
angles, onto a single master curve [7]. The shape of this master curve is sensitive to the 
key features of the aggregation process: the shape of the cluster mass distribution; the 
fractal dimension of the aggregates; the anisotropy of the aggregates; and the shape of 
the cluster structure factor. The scaling factors used in obtaining the master curves 
provide an alternative, sensitive and model-independent probe of the aggregation 
kinetics. Furthermore, those features specific to an individual colloid system, such as 
the particle radius, are scaled out of the master curve. Thus we can use the master curves 
to compare critically the aggregation of completely different colloids. In this paper, we 
compare the behaviour of three colloids, gold, silica and polystyrene latex, all aggregated 
under DLCA conditions. We show that the master curves for each of the colloids are 
identical. In addition, the fractal dimensions, measured by static light scattering, and 
the aggregation kinetics, measured by dynamic scattering, for each of the colloids are 
also identical. Thus, we conclude that DLCA is a unviersal regime of aggregation in the 
sense that it is independent of the specific chemical nature of the colloids [8]. 

The remainder of this paper is organized as follows. In section 2 we present a 
brief review of diffusion-limited colloid aggregation. This is followed in section 3 by a 
description of the details of the sample preparation and the light scattering experiments. 
We then discuss in section 4 experimental measurements of both static and dynamic 
light scattering, and present a self-consistent description of these results. In the following 
section (section 5 )  we develop a technique to separate the contributions of the trans- 
lational and rotational diffusion to the dynamic light scattering and hence are able to 
extract a true hydrodynamic radius from the data. We are thus able to measure the 
aggregation kinetics. This is followed by section 6, in which we construct the master 
curve for a single colloid, and discuss the calculation of the expected shape. Finally, in 
section 7, we utilise static and dynamic light scattering and the master curves to compare 
critically the behaviour of the different colloids, and verify that DLCA is a universal 
process. A brief concluding section closes the paper. 

2. Diffusion-limited colloid aggregation 

A typical colloid aggregation process begins with a monodisperse solution of individual 
particles of radius a at a relatively low initial volume fraction q0 S The colloid is 
initially stable against aggregation due to a repulsive energy barrier E,, that exists 
between two approaching particles [3]. Diffusion-limited aggregation is initiated by 
reducing this energy barrier until it is much less than kBT, ensuring that two particles 
stick immediately on collision. The energy of the bonds formed on aggregation are much 
greater than kB T ,  so the aggregation process is completely irreversible, and the clusters 
formed are rigid. The clusters have a tenuous and highly disordered structure, which 
can be characterised as a fractal. Thus, if M denotes the mass of a cluster in units of the 
mass of the primary particles, and if R, is the radius of gyration of the cluster, the relation 

M = ( R , / a ) d f  

holds, where df is the fractal dimension. After the aggregation is initiated, a broad 
distribution of cluster masses evolves. The shape of this distribution remains constant 
in time, while the mass of the average or characteristic clusters grows with time. The 
structure of the aggregates, the shape of the cluster mass distribution and its time 
development are all interrelated. Therefore, a complete description of an aggregation 
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process requires a description of all these features. Here we briefly review the behaviour 
of these features for the DLCA regime. 

Computer simulations [9, 101 have shown that the clusters formed under DLCA 
conditions are fractal, with df = 1.8. The fractal dimension of such aggregates has been 
measured experimentally for several different colloids, including gold [l l] ,  silica [12] 
and polystyrene [ 131. Several different techniques have been used, including the analysis 
of transmission electron micrographs (TEM), light scattering and x-ray scattering [ 141. 
In all cases a value of df = 1.8 t 0.1 is obtained, consistent with the computer simulation 
results. 

The cluster mass distribution N ( M ) ,  which expresses the number of clusters of mass 
M ,  can be determined from the Smoluchowski rate equations. The solution exhibits 
dynamic scaling [ 151, and can be written as 

N ( M )  = M - ' v ( M / M )  (1) 

M = N ~ / N ,  (2) 

. where M is an average cluster mass, which can be defined as 

where No = X N ( M ) M  is the total mass of the system and N,(t,) = X N ( M )  denotes the 
total number of clusters at the elapsed time ta from the initiation of the aggregation. The 
shape of the distribution, determined by the scaling function q ( x ) ,  is independent of 
time. The time dependence of the distribution is reflected in the moment of the dis- 
tribution M, and can be characterised by a dynamic exponent z ,  where M - t i .  To a 
good approximation, the shape of the cluster mass distribution for DLCA is given by [ 161 

M 1"' N ( M )  = - (1 - = 
NO 
M 2  (3) 

The shape of N ( M )  as expressed by equation (3) is essentially independent of M up to 
M, after which it decreases exponentially. Computer simulations of DLCA predict cluster 
mass distributions that are in good agreement with this result [17]. Experimentally, 
measurements using TEM counting of colloidal gold aggregates [18] and using electrical 
resistance counting of polystyrene latex aggregates [19] also support this result. 

The time dependence of the characteristic cluster mass can also be determined by 
means of the Smoluchowski equations [16]. For DLCA, a linear dependence is predicted, 
so that z = 1 and 

where 

with q the viscosity of the fluid and No/V the initial particle concentration. Computer 
simulations [17] also predict that z = 1. An experimental study of latex aggregates [19] 
found that the total number of clusters decreases as Nt - t i '  ; thus h? - N;' - t,, result- 
ing in z = 1, consistent with the theoretical predictions. 

Diffusion-limited colloid aggregation is achieved when the repulsive barrier between 
two approaching particles of a stable colloid is reduced to an energy much less than kBT, 
so that the rate of aggregation is limited solely by the time required for diffusion-induced 
collision between the clusters. This rate-limiting condition should, in principle, be 
achieved by any colloid system. If so, the characteristics of DLCA should pertain to the 
aggregation. In this sense, DLCA should be a universal regime of aggregation. 
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3. Experimental methods 

In this paper, we study three colloids: gold, silica and polystyrene latex. Each is a charge- 
stabilised colloid. Each can be aggregated under either slow, RLCA or rapid, DLCA 
conditions. 

The colloidal gold is made following a modification of a recipe due to Turkevich [20]. 
We heat 95 ml of a 5.3 x lo-' M solution of sodium tetrachloroaurate (NaAuClJ at 
-90 "C for at least 3 mins. To this, 5 ml of a 0.05% (by weight) solution of sodium citrate 
is added while stirring vigorously. The mixture is kept at 90 "C for 30 min while stirring 
constantly. During the first 10-15 min, the citrate reduces the gold, and the colloidal 
particles are formed, with the solution undergoing a series of changes in colour, finally 
attaining the characteristic wine-red colour. We find it necessary to keep the colloids at 
90 "C for another 15-20 min to obtain an even distribution of the surface charges on 
the particles and to ensure reproducible results. The primary particles are reasonably 
spherical in shape and highly uniform in size. The average radius of the particles is 7.5 nm 
with an RMS deviation about the mean size [21] of roughly 10%. Assuming that all the 
gold is reduced, the concentration is about 1.7 X 10l2 particles/cm3 and volume fraction 
is qo = 2.8 X 

Colloidal gold prepared in this way is very stable against aggregation because citrate 
ions, with a charge of -3, are adsorbed on the surface of the particles. The Debye- 
Huckel screening length of the solution as prepared is K - ~  - 10 nm, or roughly one 
particle radius. The surface potential of these gold colloids has been measured [21] 
to be -25 mV, and we estimate that Eb > 18kBT, making the colloid stable almost 
indefinitely. Aggregation is initiated by the addition of a neutral organic molecule, 
pyridine, which is preferentially adsorbed on the surface of the colloid, displacing the 
citrate ions and thereby reducing the surface charge and thus Eb. The particles can then 
stick to one another, forming metallic bonds. The amount of pyridine added determines 
whether the aggregation is diffusion- or reaction-limited. For DLCA, the final con- 
centration used is 0.009 M. This is achieved by injecting 1 part of a 0.1 M pyridine solution 
into 10 parts of colloid, and immediately inverting the sample cell to mix the solutions. 
The initial aggregation proceeds very rapidly, as can be seen by the almost immediate 
change in colour of the solution, from the wine-red colour of the unaggregated particles 
to the blue colour of the small aggregates. After the initial mixing, the solution is not 
subjected to any mechanical disturbances, in order to eliminate any possible restruc- 
turing effects [22,23]. 

The colloidal silica used is Ludox-TM, obtained from DuPont. It consists of particles 
with a = 11 nm and is diluted to qo = 1.7 X for the experiments. The colloid is 
initially stabilised by SiO- groups on the surface of the particles. The pH is adjusted to 
pH 2 11 by addition of NaOH. The OH- ions are necessary to catalyse the formation 
of the interparticle siloxane bonds. Aggregation is initiated by addition of NaCl, which 
decreases the Debye-Hiickel screening length, reducing the repulsive barrier between 
the particles. Again a 1 to 10 dilution is used, with a final salt concentration of 1.7 M. 

The polystyrene latex is also commercially available, and has U = 19 nm and is 
diluted to qo = 8 X for these experiments. The polystyrene is stabilised by charged 
carboxylic acid groups on the surface. Aggregation is initiated by adding 1 part of HC1 
solution to 10 parts colloid, to achieve to a final concentration of 1.2 M HCl. This both 
neutralises the surface charges and decreases the Debye-Huckel screening length. The 
interparticle bond of the aggregates are due to van der Waals interactions. 

To achieve the limit of diffusion-limited aggregation requires that Eb be reduced to 
nearly zero. This demands considerable care in the preparation of each colloid and in 
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maintaining a sufficient degree of cleanliness in the glassware used. All the solutions 
prepared must be as clean and as free of impurities as possible. To clean the glassware 
and sample cells, we use a Chromerge soak for over 1 h, followed by a rinse in a dilute 
HC1 solution and then a wash with copious amounts of water. Distilled, deionised and 
filtered water is used in every step. However, we find it crucial to filter only the water, 
and not the colloids, as the filtration process changes the colloid concentration and 
induces aggregation by changing the particle surface chemistry. These effects become 
increasingly problematic as the colloid is diluted with water to decrease q0. Dilution 
reduces the ratio of particle surface area to volume of solution, making the surface more 
susceptible to impurities. The colloidal gold seems particularly susceptible to these 
effects, as it exhibits an aging effect whereby its properties change if the colloid is more 
than a few days old. This problem was avoided by using a freshly prepared sample for 
each experiment. 

For all colloids, the result of impurities either on the glassware, or in any of the 
solutions, is to preclude achieving a true diffusion-limited aggregation process. The 
impurities presumably adsorb on the colloid surface, preventing the complete reduction 
of Eb, reducing the initial aggregation rate to less than the DLCA limit. While this results 
in only a slight change in the measured aggregation kinetics, the fractal dimension of the 
resultant clusters is increased appreciably, consistent with aggregation in the inter- 
mediate regime [3], which begins as RLCA, but then crosses over to DLCA as the cluster 
concentration decreases and diffusion becomes dominant in limiting the aggregation 
rate. In fact, we find that monitoring df by static light scattering is an excellent method 
of ensuring the cleanliness of the glassware and solutions. A measured df - 1.85 indicates 
that the aggregation is truly DLCA, while an increase in the measured df to greater than 
-1.95 invariably indicates problems with impurities. Our observations concerning the 
importance of using freshly prepared samples of colloidal gold, and avoiding the prob- 
lems with changing the surface chemistry, introduced by filtration, are consistent with a 
report by Olivier and Sorenson [24]. They studied the aggregation of colloidal gold 
initiated by HCl. They used samples that were several months old, and were filtered 
immediately prior to use, and they were unable to achieve the limiting case of DLCA. 

We use both static and dynamic (or quasi-elastic) light scattering. Static light scat- 
tering measures the time-averaged scattering intensity from the sample, Z(q), as a 
function of the scattering wavevector q = (4nn/A.) sin(8/2), where A. is the incident 
wavelength in uacuuo, n is the index of refraction of the water and 8 is the scattering 
angle. Dynamic light scattering, by contrast, measures the temporal autocorrelation 
function of the scattering intensity [25], 

G*(t) = ( Z ( t > l ( O > )  ( 5 )  
where tis the delay time and the angle brackets represent an ensemble average. 

The detection optics are mounted on the rotating arm of a goniometer, allowing us 
to measure both the static and the dynamic scattering concurrently as a function of the 
scattering angle 8, and hence the scattering wavevector q.  Our source is an argon-ion 
laser with a wavelength A. = 488 nm. For the colloidal gold samples, which strongly 
absorb the light, the incident intensity is maintained at less than 1 mW before entering 
the sample cell to avoid spurious heating effects. A 272-channel correlator is used to 
measure both the intensity autocorrelation function G2(t) and the average intensity Z(q). 
The sample time of the correlator is adjusted so that the magnitude of the autocorrelation 
function decays by about one decade for each measurement. The baseline B of the 
autocorrelation function is determined both from the measured average intensity and 
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from the correlator baseline channels, which are delayed an additional 1024 sample 
times. While the two methods usually agree to within O S % ,  the average intensity is 
always used in the analysis. Although we experimentally measure the intensity auto- 
correlation function, it is much simpler theoretically to calculate the normalised field 
autocorrelation function, 

where E(t) is the scattered electric field. However, for fractal clusters the two are related 
[26] by the Siegert relationship [27] 

G2( t )  = A’Bg:(t) + B (6)  
where A’ is a constant of the order of unity, which depends on the geometry of the 
detection optics. Much of our analysis is in terms of the initial time dependence of the 
autocorrelation function, as determined by the logarithmic slope at t = 0, or the first 
cumulant 

rl = -[a lngl(t)ldtlIr+O. (7)  
To determine rl, we fit the logarithm of the autocorrelation function to a third-order 
polynomial, 

lngl( t )  = 1 - r , t  + w 2 t 2  - &t3. (8) 
We find empirically that this fitting procedure gives a good approximation to the initial 
slope. 

The measurements are performed in two ways. To obtain good statistics at large t 
requires averaging for long times. However, these averaging times must still be small on 
the timescale of the change in A?. This is difficult to achieve in DLCA since the aggregation 
rate is so rapid. Thus to obtain data at large t ,  we stop the aggregation at fixed time t,, 
by adding a small amount of surfactant. We use sodium dodecyl-o-xylenesulphonate 
[28] at a concentration of lom3 M. The surfactant adsorbs on the surface of the colloid 
particles, providing a steric stabilisation and thus halting further aggregation. However, 
since the amount of adsorbed surfactant is so small, neither the static nor the dynamic 
light scattering is modified. This method allows us to collect good-quality data at long 
delay times t and at several different values of q with a fixed A?. To assure good statistics, 
we average at least lo6 times the longest correlation time t. However, the method is 
suitable only for colloidal gold, as we have been unable to find a surfactant with the 
required properties for the other colloids. 

The second method is used for the other colloids. Here we repeatedly measure the 
autocorrelation function at different angles as the aggregation proceeds. However, since 
A? is constantly changing we are able to collect data at each point for a shorter period of 
time. This limits the statistics of the data at larger delay times. Nevertheless, we are still 
able to determine rl with good precision. 

4. Light scattering from colloidal aggregates 

In this section, we develop a consistent description of both static and dynamic light 
scattering using a single sample for which the aggregation has been stopped at a time t,. 
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We show that the static light scattering can be described using the structure factor 
determined from computer-generated DLCA clusters and the cluster mass distribution 
determined from the Smoluchowski equation, given by equation (3). This provides a 
measure of the average cluster mass of the distribution, A?. In addition, we are able to 
describe accurately the full shape of the correlation function measured by dynamic light 
scattering at several different values of q .  To do so we use the same cluster mass 
distribution, the same structure factor for the clusters and the same value of A? deter- 
mined from the static light scattering. However, in addition, we must include the 
effects of rotational diffusion, which become increasingly important as q increases. 
Furthermore, by comparing the static and dynamic scattering data at low q ,  we are able 
to determine p, the ratio of the hydrodynamic radius Rh to the radius of gyration R, of 
the individual clusters. Since we must stop the aggregation, we use colloidal gold for 
these measurements. 

The static scattering intensity I M ( q )  of clusters of mass M is proportional to the 
Fourier transform of the pair density correlation function of such clusters. Therefore, a 
measure of the q dependence of the scattering intensity reveals the structural properties 
of the clusters and, consequently, can determine the fractal dimension. However, since 
the clusters are polydisperse, the measured scattering intensity Z(q) is an average of 
I M ( q )  over the cluster mass distribution. Therefore, Z(q) can be written as 

where 

I M ( q )  = A M 2 S ( q R g ) *  (10) 
Here A is a constant depending on the experimental conditions and the scattering cross 
section of the individual particles. We denote by S(qR ) the static structure factor of 
clusters of mass M ,  having a radius of gyration R, = aM'& The structure factor depends 
on q and R, through the dimensionless combination qR, [22], since R, is the only relevant 
length scale of a self-similar cluster. Its limiting behaviour is 

For qR, = 1, the shape of S(qR,) is determined by the form of the cut-off of the pair 
density correlation function introduced by the finite size of the clusters. It follows from 
equations (9) to (11) that the total scattering Z(q) also has the same form of limiting 
behaviour as S(qR,): at sufficiently low q it is isotropic, independent of q,  while at 
sufficiently large q it also exhibits the q-d f  behaviour characteristic of the fractal struc- 
ture. However, the polydispersity in the cluster mass distribution smears the cross-over 
between these two limiting regions so it extends over a larger range of q .  Here we choose 
a sample for which the aggregation is stopped when the cross-over region can be probed 
by the experimentally accessible scattering wavevectors. The data are shown by the 
points in figure 1. 

The data are described with equations (9) and (10). For the cluster mass distribution 
we use the DLCA form in equation (3). For the structure factor, we use 

S(X) = (I + c , x 2  + c 2 x 4  + c 3 x 6  + C ~ X * ) - ~ ~ ' ~  (12) 

where x = qR,, C1 = 8/3df, and C2 = 2.50, C3 = -1.52 and C, = 1.02. The values of 
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Figure 1. Static light scattering intensity from col- 
loidal gold aggregates formed by DLCA. The data 
were taken when the sizes of the aggregates were 
not large enough for the intensity to exhibit a 
linear fractal scaling in the logarithmic plot. The 
full curve is a calculation using equations (3), (9), 
(10) and(l2). AnaverageclustermassofM = 165 
is obtained from the fit. 

35 

the coefficients are obtained by fitting the expression in equation (12) to the S(qR,) 
calculated directly using computer-generated DLCA clusters. A detailed study [22] of the 
static light scattering from both DLCA and RLCA clusters shows that the form of the 
structure factor in equation (12) provides a much better description of the finite extent 
of the fractal aggregates than other forms of S(qR,) suggested in the literature. The 
value of A? = 165 is obtained from a fit to the data, shown by the full curve in figure 1. 
As can be seen, the agreement is excellent. 

To analyse the dynamic light scattering data from this sample, we must consider the 
effects of both translational and rotational diffusion [23,26], since, at large angles, many 
clusters in the distribution are larger than q-'. The autocorrelation function gl(t) of the 
field scattered from an anisotropic, inhomogeneous object can be calculated under the 
assumption that the effects of the coupling of translational and rotational diffusion are 
negligible. Both computer-generated and experimentally produced DLCA clusters have 
typical overall aspects ratios of about 2, so this assumption applies. Then, the field 
autocorrelation function can be expressed as [23] 

CE 

1 
gl(t) = -E N ( M ) M 2  exp(-q2Dt) E S l ( q R , )  exp[-Z(l+ l)@t]. 

I ( q )  M l = O  

Here, D = [/R,  is the translational diffusion coefficient and 0 = $g/R: is the rotational 
diffusion coefficient of a cluster of mass M ,  and [ = kBT/6nq. Each term in the second 
sum, which represents the rotational contribution, is weighted by a factor Sl(qR,). These 
factors are essentially the multipoles of the structure factor, since S(qR,) = &Sl(qRg). 
They reflect the anisotropies of the geometric structure of the clusters, expressed in 
Fourier space. 

From equation (13) we see that translational and rotational diffusion contribute to 
the autocorrelation function with different decay rates. For translational diffusion, the 
decay rate is Tt = Dq2, and is proportional to q2. By contrast, the Zth term in the sum 
originating from rotational diffusion has a decay rate r, = Z(1 + 1)0,  independent of q. 
The q dependence due to rotations is caused by the anisotropy of the structure, and thus 
is reflected in the components Sl(qR,) of the structure factor. 

The complete set of multipoles, Sl(qR,), can be calculated with computer-generated 
DLCA clusters, and used in equation (13) to determine the autocorrelation function. The 
results obtained by this technique are in excellent accord with experimental measure- 
ments [26]. However, this method is computationally intensive, making it relatively 
inflexible and difficult to apply to clusters larger than M = 1000 and qR, > 10. To extend 
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Figure 2. The scaled effective diffusion coef- 
ficient, including the effects of rotational diffusion 
for DLCA clusters. It is an average of calculations 
from nearly 200 computer-generated clusters of 
different masses. 

the results beyond these practical limitations we explicitly take advantage of the scaling 
properties of the fractal clusters [29]. 

An approximation of the autocorrelation function, equation (13), which is exact up 
to the first cumulant, can be constructed as 

1 
g,  (t> = N(M>M2S(qRg> exp(-q2Defft) (14) 

where the effective diffusion coefficient Deff = Df(qR,) includes the effects of both 
translational and rotational diffusion. The functionf(qR,), which reflects the effects of 
rotational diffusion to the first cumulant, can be derived from equation (13) as 

and is seen to be a function of qR, only. Thus, for dynamic light scattering, as for static 
light scattering, the clusters can be characterised by a single length scale, R,. At small 
qR,, Sl(qR,) = 0 except for 1 = 0, so that f(qR,) = 1,  as expected, since the scattered 
light cannot resolve the anisotropy of the clusters under these conditions. For qR, + 1, 
scaling arguments show [29,30] that 

f(qR,) = 1 + a2A4P2> (16) 

where a = 1.5. The shape off(qR,) can be calculated using equation (15) with computer- 
generated clusters. We have calculatedf(qR,) for 20 DLCA clusters each of masses 100, 
200, . . . ,900 particles using P = 0.93 as discussed below. The average value off(&) 
is plotted as a function of qR, in figure 2. As can be seen, the curve approaches 1 when 
qR, < 1, rises when qR, = 1, and becomes constant again when qR, > 5 ,  as predicted. 
These results explicitly reflect the consequences of rotational diffusion of an essentially 
monodisperse distribution on the first cumulant of the autocorrelation function. 

We can now evaluate the autocorrelation function for the distribution of DLCA 
clusters, using equation (14). We use the f(qR,) shown in figure 2, equation (12) for 
S(qR,) and equation (3) for N ( M )  as appropriate for DLCA clusters. We take A? = 165, 
as determined from the fit to Z(q). 

At small angles, where qR, = qaA?l/df is small, rotational diffusion plays almost no 
role, so that Deff = D = C/PR,, and the only unknown parameter in equation (14) is 0. 
Thus we can obtain the experimental value for P for DLCA clusters from a fit of equation 
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Figure 3. The autocorrelation function measured 
at 8 = 15"for gold DLca aggregates. The full curve 
through the data is a fit using equation (14) and 
Deffr which includes the effects of rotational dif- 
fusion with M = 165 from the fit to the static light 
scattering. The fit and the data cannot be 
distinguished. The broken curve is the same cal- 
culation, but excludes the effects of rotational 
diffusiop, which makes only a small contribution 
since qR, = 0.75. A value of /3 = 0.93 is obtained 
from the fit. 

Figure 4. The autocorrelation function measured 
at 0 = 96"forgold~~c~aggregates .  Thefullcurve 
through the data is a calculation using equation 
(12) and Deff, which includes the effects of 
rotational diffusion with M = 165 from the fit to 
the static light scattering. The broken curve is 
the same calculation, but excluding the effects of 
rotational diffusion, which are significant in this 
case where qR, =L 4.3. 

(14) to the measured autocorrelation function. This is shown in figure 3 (full curve), 
where we plot the autocorrelation function measured at 8 = 15", corresponding to q = 
0.0045 nm-', and qR, = 0.75. We obtain /3 = 0.93, and the agreement between the fit 
and the data is so good that the fitted curve cannot be distinguished from the data. The 
fit includes the effects of rotations, but they play a very small role as can be seen from 
the broken curve, which is a calculation using Deff = D .  The value obtained for /3 is in 
good agreement with theoretical [31] and computer [32] calculations. We note that a 
value of p = 1.0 has been obtained for RLCA clusters, both experimentally [6,33,34] 
and theoretically [31,32]. The difference for the two regimes is not surprising, given 
their different fractal dimensions. 

At  large angles, rotational diffusion is much more important. This is evident in figure 
4, where we plot the autocorrelation function measured at 8 = 96", corresponding to 
qR, = 4.3. The autocorrelation function is also calculated, where there are now no 
unknown parameters. The calculation is in excellent agreement with the data. By 
contrast, if the effects of rotational diffusion are not included, the calculation deviates 
considerably from the data as shown by the broken curve in figure 4. Similarly good 
agreement between the calculation and the data is obtained at all other angles. 

We note that we obtain good agreement with the shape of the autocorrelation 
function over all delay times measured, using the approximate expression, equation 
(14). This implies that the major contribution to the higher-order cumulants arises from 
the cluster mass distribution rather than from the effects of rotational diffusion on the 
shape of the decay of the autocorrelation function of individual clusters. 

5. Aggregation kinetics 

In the previous section, we investigated the scattering from a single sample with R,  
comparable to q-'. This enables us to use both static and dynamic light scattering 
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techniques to study the features of the aggregates, especially the static structure factor 
and the effects of rotational diffusion. This analysis of the scattering results can be 
extended to other times during the aggregation, which is essential to draw conclusions 
about the growth kinetics. Here, we demonstrate how the characteristic cluster size of 
the distribution can be determined as a function of the aggregation time ta. However, as 
we have seen in the previous section, the effects of rotational diffusion cause a significant 
change in the shape of the autocorrelation function for qR, > 1; therefore they also 
cause a significant change in the apparent average hydrodynamic radius determined 
from the first cumulant. Thus, we define an effective average diffusion coefficient, 

7- CI N ( M ) M *  S(qRg)Deff D =l=M 1 

eff q2  C I N ( M ) M % ( q R , )  ' 

M 

This is simply an average of the effective diffusion coefficient Deff, weighted by the 
scattering intensity and the cluster mass distribution. We note that the orientationally 
averaged static structure factor is used as the intensity weighting. The rotational effects 
are included in equation (17) only through Deff, which, as expressed in equation (15), is 
itself an average weighted by the multipoles of S(qR,).  

We can experimentally determine Deff from the first cumulant. We note that, in 
general, Deff depends on q due both to the cluster mass distribution and to the con- 
tributions of rotational diffusion [26]. Thus the experimentally determined Reff = 
(/Eeff is also q-dependent. However, since every quantity in equation (17) is known, it 
is a simple matter to calculate the true average hydrodynamic radius R h ,  which is not q- 
dependent. This is most conveniently done by means of the DLCA calibration curves in 
figure 5, where we plot R h  as a function of the measured Reff at several different angles. 
For comparison, we also plot the relationship R h  = Reff, representing a monodisperse 
system with no rotational effects. The shapes of the calibration curves at various angles 
differ, reflecting the differing onsets of the contribution of rotational diffusion as qR, 
approaches unity for each value of q. For sufficiently large Reff the three calibration 
curvescoincide, as they have all reached the large qR,limit. However, here the difference 
between Reff and R h  is pronounced. The additional contribution to the autocorrelation 
function due to rotational diffusion causes a faster decay; thus if only translational 
diffusion is considered, the effective average cluster size would be smaller by a factor of 
about 2 at large qR,. 
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Figure 6. The aggregation kinetics determined by the average hydrodynamic radius Rhr as 
a function of the aggregation timet,. The circles (0 = 207, crosses (0 = 42") and pluses (0 = 
111") are obtained using the calibration curves of figure 5 .  These data give a kinetic exponent 
of 0.50, shown by the dotted line. The triangles are the values of Rh, determined from the 
scaling leading to the master curve. They give a kinetic expopent of 0.53, as shown by the 
broken line, giving z = 0.98. By comparison, the measured Reff obtained at 0 = 42" is also 
plotted using stars. It has a smaller slope, 0.40. 

The aggregation kinetics can be obtained from the measurements of the first cumulant 
at any angle using the appropriate calibration curve. As an example we plot, in figure 6, 
the values of R,  as a function of the aggregation time ta, determined from experiments 
performed at several different angles. For comparison we also show by the stars in figure 
6 the measuredvaluesReff obtained at one of the angles, 8 = 42". The correction provided 
by the calibration curve due to the effects of rotational diffusion is apparent. The linear 
behaviour exhibited by the data in the logarithmic plot in figure 6 indicates power-law 
kinetics. We emphasise, therefore, that the effects of rotational diffusion not only affect 
the average size of the clusters determined experimentally, but also modify the apparent 
exponent of the growth kinetics. Thus the full line through the uncorrected data repre- 
sented by the stars has a slope of 0.40, whereas the corrected hydrodynamic radius grows 
with an exponent of roughly 0.50 as shown by the dotted line in figure 6. 

6. Master curves for dynamic light scattering 

In the preceding section we measured the aggregation kinetics using the values that the 
first cumulant has in the limit as q-, 0. This was accomplished by combining the 
measured results, obtained at non-zero q ,  with our knowledge about the cluster mass 
distribution and about the structure factor. This analysis, therefore, makes use of the 
calculations to obtain S(qR,) and various Sl(qR,) from the computer-generated clusters. 
There is, however, a considerable amount of additional information in the q dependence 
of I)eff. In this section we develop a method to scale all of the measured values of Deff 
onto a single master curve, and show that the shape of this master curve reflects many 
of the features characteristic of diffusion-limited colloid aggregation. This master curve 
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Figure 7. Master curves calculated for different conditions: A, fieti = 5, with no poly- 
dispersity or rotational diffusion; B,  with cluster mass distribution of DLCA, excluding the 
effects fo rotational diffusion; C, including the effects of rotational diffusion, but with a 
monodisperse cluster mass distribution; and D ,  including the effects of both the cluster mass 
distribution and rotational diffusion for DLCA clusters. 

displays the dependence of Deff/D on the dimensionless quantity &. Here, D = c / R h  

is the diffusion coefficient that would be determined from the first cumulant at q = 0. 
Experimentally, only a limited range of q values is accessible so a measurement of 

the full extent of Deffis not possible. However, as the aggregation proceeds, Mincreases 
and the scattering will be progressively dominated by larger and larger clusters, so that 
it becomes impossible to extract easily the true hydrodynamic radius R h  directly from 
experiment. We can, however, greatly extend the range over which the q dependence 
of Deffcan be measured by exploiting the dynamic scaling of the cluster mass distribution, 
equation (1). As shown in the appendix, D,,/D is a function of q R h  only; this result 
reflects the fact that the cluster mass distribution is characterised by M and therefore by 
a single length scale R h .  This allows us to determine a single master curve for all the data. 

To illustrate the significance of the master curve we show how its shape is affected 
by several key features of the aggregation process in figure 7 ,  where we plot Deff/D, 
calculated from equation (17) for DLCA clusters, as a function of q1;ih. Curve A is the 
result for monodisperse spheres so that Deff = 0. Without polydispersity and rotational 
diffusion there is no q dependence. Curve B takes into account the polydispersity as 
described by the cluster mass distribution N ( M )  for DLCA, but still ignores rotational 
effects. This introduces a slight q dependence. In curve C we assume a monodisperse 
cluster mass distribution, but we use the form for Deff/D = f(qR,) from equation 
(15) and figure 2 to include rotational diffusion. Now the q dependence introduced is 
somewhat greater. Finally, curve D takes account of both N ( M )  and rotations. This 
curve exhibits the strongest variation with qR, of all those shown. The shape of the 
master curve is therefore sensitive to various features characterising the agregation. It 
depends on the cluster mass distribution and on rotational diffusion, and thus reflects 
the anisotropies of the clusters. Since Deff/D is a convolution of N ( M ;  t,) and S(qR,) and 
since A? increases with increasing aggregation time t,, the shape of the master curve is 
also sensitive to the detailed form of the structure factor S(qR,) in the cross-over region 
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around qR, -- 1. Finally, the scaling factor R, required to shift the data onto the master 
curve provides the characteristic size of the clusters, and its time dependence will directly 
reflect the aggregation kinetics. 

To produce the master curve from the experimental data, we measure Deff as a 
function of q for several different aggregation times t,. Using colloidal gold, the aggre- 
g-ation can be halted at t, to make the measurements. In figure 8, we plot the measured 
Deff as a function of q for samples stopped at seven different values of ta. With this 
method, we are able to obtain data at very early stages of the aggregation, despite its 
rapid rate. 

To scale these data onto a single master curve requires a knowledge of R h  for each 
data set. However, to measure R h  directly would require data obtained in the q 4 0 
limit, which is not possible, except at the earliest times. Hence, the scaling factors for 
the other data sets are obtained empirically by choosing an R h ,  and an equivalent fi, for 
each data set so that it overlaps with the previous data set. Operationally, this simply 
involves shifting each data set along the diagonal of the logarithmic plot in figure 8 until 
they all overlap. With sufficient data, this scaling process is both straightforward and 
unambiguous. As can be the results shown in figure 9, the data can be scaled to lie on a 
single master curve. The full curve plotted with the data is the calculation shown in curve 
D in figure 7, which includes the effects of the cluster mass distribution and rotations. 
We emphasise that there is no free parameter to scale the calculation with the data. 
Excellent agreement is found between the calculation and the data for qR < 10. At 
higher &, there is a slight, but persistent, q dependence exhibited by the data, which 
is absent from the calculation. We speculate that this may be due to internal vibrations 
of the clusters, which are not included in our calculation. These would be expected to 
become more important at large q R h ,  and would provide an additional decay mechanism 
for the autocorrelation function, thereby increasing the measured Deff. This is consistent 
with our observation in figure 9. 

The scaling factors R h  obtained for the data set at each t, represent an alternative 
method of determining the aggregation kinetics. We show these valuesof Rh as a function 
of ta by the triangles in figure 6 .  We emphasise that the values of R h  determined in this 
fashion are free of many of the assumptions inherent in the calibration curves used 
in the previous section. Over most of the aggregation times investigated, very good 
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Figure 9. Data from figure 8 scaled onto a 
master cur_ve, by multiplying each set by a 
facto: of Rh/Jr and plotting as a function 
of qRh. An Rh(ta) is chosen for each data 
set such that it overlaps with the others. 
The fullcurveis thecalculated result shown 
in curve D in figure 7. 

agreement is observed by the two methods. However, at the longest times, the R h  

obtained by the present method increases somewhat more rapidly. This reflects the fact 
that this method can account for the additional dynamics that are apparent at high q R h  
in the master curve. Thus the exponent describing the kinetics obtained by this method 
is again somewhat higher, 0.53 as shown by the broken line in figure 6 .  This is probably the 
most accurate method for determining the aggregation kinetics. The large overlapping 
range of the data sets ensures that the scaling is unambiguous, providing an accurate 
measure of R h .  We estimate the fractional uncertainty of R h  obtained in this way to be 
less than 10%. The kinetic exponent for R h  is directly related to z .  Since M - t i ,  and 
since, as we show later, Rg - Rh, we have R h  - M1Idi - tild? Using the value df = 1.86 
obtained from the static light scattering at later times, we can determine the value of z = 
0.98, which is in good agreement with the theoretical expectation. 

We have previously reported [35] that the effective hydrodynamic radius measured 
at a single angle, and not corrected for rotational diffusion, increased as t;ldf. This earlier 
result was incorrect. It was probably obtained using a somewhat aged colloid, and was 
therefore not truly in the diffusion-limited regime, but was rather in the cross-over 
between DLCA and RLCA. Nevertheless, despite our earlier error, the essential conclusion 
of our earlier work, that z = 1, remains completely valid, as shown here. 

It is clear from the results reported here that a true measure of the dynamic exponent 
z requires, at the very least, a correction to be made for the effects of rotational diffusion. 
If this is not done, an incorrect result for z is obtained. In a recent paper, Wilcoxon et a1 
[36] studied the aggregation kinetics of colloidal gold using dynamic light scattering, and 
obtained a value of z/df = 0.4 from the time dependence of Reff, consistent with our 
results reported here. However, they did not make any corrections for rotational diffu- 
sion, and thus misinterpreted their measurements, arriving at incorrect conclusions 
concerning the kinetics of DLCA for colloidal gold. If they had properly included the 
consequences of rotational diffusion, they would presumably have determined a value 
of z = 1, in accord with our measurements, and as expected theoretically. 

7. Universal behaviour of DLCA 

The procedure used in the previous section to obtain the master curve is based on the 
scaling properties of the cluster mass distribution and the structure factor. This scaling 
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procedure has the desirable feature that all properties, specific to the colloid used, drop 
out. As we have shown, the shape of the master curve is very sensitive to several key 
features characteristic of the aggregation process. Thus this provides a method to 
compare critically the behaviour of different colloid systems, and to test the universality 
of diffusion-limited colloid aggregation. In addition, static light scattering can provide 
an additional measure of the universality through the determination of the fractal 
dimension and the structure factor of the clusters. 

To test this universality of DLCA, we choose, in addition to the gold system, two very 
different colloids: silica and polystyrene latex. Each of these three colloids comprises a 
different material; each colloid is stabilised by different functional groups; the aggre- 
gation of each colloid is initiated by a different method; each colloid forms completely 
different interparticle bonds upon aggregation. However, each of them can be aggre- 
gated in either the diffusion-limited or reaction-limited regime. 

Unlike the gold, we do not have a suitable method for stopping the aggregation of 
the other two colloids. Instead, all the data for these two colloids were taken repeatedly 
as a function of q by changing the angle of the detector while the aggregation proceeded. 
Since we require sets of data obtained at the same value of ta and therefore the same 
value of A?, the first cumulants at each angle were interpolated, assuming power-law 
kinetics, to obtain sets of Deff at the same t,, similar to those shown in figure 8 for gold. 
The master curves for the other two colloids were then independently obtained following 
the same procedures described in the previous section. The kinetics were determined 
from the time dependence of the scaling parameter Rh. In addition, the static light 
scattering intensity was measured concurrently, allowing the fractal dimensions to be 
determined independently. 

In figure 10, we plot the three master curves obtained independently from the 
different colloids. We emphasise that there are no adjustable parameters in their com- 
parison. Nevertheless, the master curves for each of the colloids are indistinguishable. 
Furthermore, the same agreement between the calculated master curve and the data is 
obtained. In addition, the behaviour of the static scattering from each of the colloids is 
the same, as shown in figure 11. The measured fractal dimensions were d f  = 1.86 to 
within 50.01, for each case, as shown in table 1. Finally, the growth kinetics of each 
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Table 1. Comparison of quantities for the three colloids. 

Dynamic prefactor 
(nm/mino 54) 

Colloid df 2 1.44alt,0 54 Measured 

Gold 1.86 0.98 454 365 
Silica 1.85 1.00 272 166 
Polystyrene 1.86 1.05 128 115 

0 G o l d  

100 
0 . 1 0 . 2  0 . 5  1 2 5 10 20 50100200  

t, l m i n )  

Figure 12. Kinetics of DLCA aggregation 
for gold (0), silica (+) and polystyrene 
(*), plotted on a logarithmic scale. The 
slopes for the straight lines are: 0.53 for 
gold, givingz = 0.98; 0.54for silica, giving 
z = 1.00; and 0.56 for polystyrene, giving 
z = 1.05. 

colloid also had the same behaviour, as shown in figure 12, where the values of Rh, 
obtained from the scaling, are plotted as a function of aggregation time t,, for the three 
colloids. They all exhibit linear behaviour in the logarithmic plot. From the slope of each 
curve and the measured fractal dimension, we can determine the kinetic exponent z for 
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each colloid. As listed in table 1, the values of z thus obtained are all nearly unity, in 
agreement with the theoretical prediction, z = 1. 

A further quantitative check of the validity of the theory is obtained from the value 
of the prefactor of the power-law kinetics for each colloid, determined from the plot. 
Theoretically, from equation (4a) at long times, we have 

R ,  21 a(ta/to)lldf (18) 

where to is given by equation (4b). This must be expressed in terms of Ah, which is 
determined from the scaling to produce the master curves. To do so, we define the nth 
moment of the distribution as 

x, = 2 N ( M ) M " .  (19) 

We can then express both average radii, R, and Rh, in terms of the appropriate moments, 

R ,  = a(X1/Xo)l/df 

Evaluating these expressions, using the DLCA cluster mass distribution, equation (3), we 
find that 

where I-( v) is the gamma function. Therefore, we have 

Rh = 1.44a(ta/to)lJdf (20) 

so that the calculated prefactor is 1.44~/t; /~f.  The calculated and measured values for 
each colloid are compared in table 1. Again we find remarkable agreement in each case, 
considering all the approximations we have made and the experimental uncertainties. 

In this section, we have compared the behaviour of three completely different 
colloids aggregated by DLCA. We find that the shapes of the master curves, determined 
independently from the dynamic light scattering data from each colloid, are identical. 
Furthermore the fractal dimension of the clusters for each colloid, determined from the 
static light scattering, as identical. Finally, the aggregation kinetics for each colloid, 
determined from the scaling procedure used to form the master curves, all exhibit a 
power-law dependence, with identical dynamic exponents. In addition, the prefactors 
of these power-law kinetics agree quantitatively with theoretical predictions. These 
observations are convincing evidence of the universality of diffusion-limited colloid 
aggregation. 

8. Conclusions 

In this paper, the process of colloid aggregation in the diffusion-limited regime is studied 
using both static and dynamic light scattering. We show that the combination of both 
scattering techniques provides an excellent probe of the aggregation process. Many of 
the important features can be determined: the fractal dimension of the clusters; the 
structure factor of the clusters; the cluster anisotropy as reflected in the rotational 
diffusion; the cluster mass distribution; and the aggregation kinetics. We present a 
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detailed description of static and dynamic light scattering from colloidal aggregates, 
which is in good agreement with the experimental results. Static light scattering, with 
qR, P 1, is used to measure the fractal dimension; when qR, = 1 it is used to measure 
the cross-over behaviour of the structure factor due to the finite extent of the aggregates. 
Dynamic light scattering is used to determine the shape of the cluster mass distribution 
and the effects of rotational diffusion of the aggregates when qR, > 1. When the effects 
of rotational diffusion are properly included, dynamic light scattering can be used to 
obtain a measure of the true size of the characteristic cluster. We have also measured 
the ratio of the hydrodynamic radius to the radius of gyration of individual clusters, and 
find /3 = 0.93 for DLCA aggregates. 

A method is developed to scale the results of dynamic light scattering onto a single 
master curve. The sensitivity of dynamic light scattering to the key features of the 
aggregation process is reflected in the shape of this master curve. Since the master curves 
are independent of the specifics of the colloid system, they can be used to test critically 
the universality of DLCA. This universality is confirmed by showing that the master 
curves obtained independently from three completely different colloids are identical. In 
addition, static light scattering measurements of the fractal dimension and dynamic light 
scattering measurements of the aggregation kinetics are also identical for the three 
colloids. These results provide convincing evidence that diffusion-limited colloid aggre- 
gation is a universal kinetic growth process. 

Appendix 

Here we prove that the ratio of the average effective diffusion coefficient and its value 
at q = 0, Oeff/O, is a function of qRh only. 

We name F ( q ,  Eh) = Be,/O, where Rh = ( / D .  Also Deff/D = f(qR,), which is a 
function of qRgonly, as shown in equation (15). Since Deff = r1/q2, according to equation 
(17), 

Defining R,/Rh = r ,  M/M’ = m, where a’ = (Rh/a)df is a moment of the cluster 
mass distribution, and consequently, m = rdf. We also name qR, = x. Recall from 
equation (1) that we have 

N(M)M2 = ly(m)m2. (A21 

We now convert the summation EM N(M) to an integral, J N(M) dM, and rewrite 
equation (Al) as 

= d r  r 3 d f l y ( r d f ) S ( ~ r ) f ( x r )  p d r  r3df-11y(rdf)S(xr) / i  
It is clear from equation (A4) that ~ ( q ,  Eh) = ~ ( x ) ,  that is, it is a function of qRh 
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only. Hence, the quantity Deff/D scales with qRh, which assures the existence of the 
master scaling curve. 
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